> -

PG

-

AT

e
;e @
et PN

{
¢
¥
N
Y

¥ 2

-
- &

Copyright © 2019 Dr. Jan Hackenberg
FREE SOFTWARE DEVELOPER
HTTPS://SIMPLEFOREST.ORG/

Licensed under the Creative Commons Attribution-NonCommercial 3.0 Unported License (the
“License”). You may not use this file except in compliance with the License. You may obtain a
copy of the License at http://creativecommons.org/licenses/by-nc/3.0. Unless required
by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and limitations under the License.

First printing, December 2019

http://creativecommons.org/licenses/by-nc/3.0

1.1

1.2
1.2.1
1.2.2
1.3

1.3.1
1.3.2
1.3.3
1.34

14

2.1

4.1
4.1.1

' L\ "4 T&,:
N é\"vé\'

R
L ¥ ;A B\

Lo
g

L/ =
—~— ya
7

2 OTA 1]
2 é

'L
/

Definitions
QsM

Growthparameters
Growthlength . .o o e
GrowthvolumMeE . . . e

Branchorder

Branchorder
Reverse Branchorder
Reverse Pipe Area Branchorder 0 i e
Reverse Pipe Radius Branchorder i e

Computational metrics
Statistics

Rscript

Part Two - The step description

Source Code SimpleForest

Binary Point CloudFilters

Cut cloud above DTM
SCreeNSNOTS . o

10
10
11

12
12
12
13
13

14

15
15

18

19
20

4.1.2
4.1.3
4.1.4

4.2

4.2.1
422
423
4.2.4

4.3

4.3.1
432
4.3.3
4.3.4

4.4

4.4.1
442
4.4.3
4.4.4

4.5

4.5.1
4.5.2
453
4.5.4

4.6

4.6.1
4.6.2
4.6.3
4.6.4

4.7

4.7.1
4.7.2
4.7.3
4.7.4

4.8

4.8.1
4.8.2
4.8.3
4.8.4

5.1

5.1.1
5.1.2
5.1.3
5.14

Step Placement
O o
DESCriTION . o . o e
Euclidean Clustering Filter

SCIEENSNOTS L

Filter By Min Height
SCrEeENsSNOTS . . o

Clustering i

Segmentation Euclidean Clustering

SCrEENSNOTS . o
Step Placement . .
O
DESCriTION . o . o e

5.2

521
522
523
524

5.3

5.3.1
5.3.2
5.3.3
534

54

5.4.1
5.4.2
543
5.4.4

6.1

6.1.1
6.1.2
6.1.3
6.1.4

7.1

7.1.1
7.1.2
7.1.3
7.1.4

7.2

7.2.1
7.2.2
7.2.3
724

7.3

7.3.1
7.3.2
7.3.3
7.3.4

74

7.4.1
7.4.2
7.4.3
744

Dikstra Based Tree Segmentation
SCIEENSNOTS L . o

Voronoi Based Tree Segmentation
SCreensNOTS . .

QSM based tree clustering
SCreensNOTS .

DTM/DEM steps

Dim Pyramidal Mlesac Fit
SCrEENSNOTS .

QSM steps

QSM Spherefollowingbasic
SCreensNOTS . .

QSM SpherefollowingAdvanced
SCIEENSNOTS .

Dijkstra Modelling
SCreeNSNOTS . . o

30
30
30
30
30

32
32
32
32
32

33
33
33
33
33

34

35
35
35
35
35

7.5
7.5.1
752
7.5.3
7.54
7.6

7.6.1
7.62
7.6.3
7.64

7.7

7.7.1
7.7.2
7.7.3
7.7.4

7.8

7.8.1
7.82
7.8.3
7.8.4

7.9

7.9.1
792
7.9.3

v
7.10

7.11
7.12
7.13
7.14

VI

QSM Correct Shoots 46
SCrEeeNsSNOTS o o 46
Step Placement . .. 46
O 46
DEesSCTION L . e 46
QSM Allometric Correction 47
SCrEeENSNOTS & o e e e e e e 47
Step Placement e 47
O 47
DESCTION L . o e 47
QSM Allometric Correction Manual 51
SCrEeENSNOTS . o e e e e e e e 51
Step Placement . .. 51
O 51
DESCTION L . o e 51
QSM Reverse Pipe Model Filter 52
SCIEENSNOTS o v e 52
Step Placement . ..o 52
O 52
DS T ION o o e 52
Evaluation 55
RESUMS ot e e 55
INterpretation 55
Recommondatation ..o e 56
FAQ 58
Version 5.2.2 60
Version 5.2.1 60
Version 5.1.4 60
Version 5.1.3 60
Bibliography 62
Articles 62

_— e —

N wN =

NN

Definitions

QSM
Growthparameters
Branchorder
Computational metrics

Statistics i
Rscript

1.1 QSM

A quantitative structure model (QSM) is a topological orederd structure of building bricks, in our
case cylinders.

within a segment. The cylinders are an ordered list with the first cylinder being the cylinder
closest to the root and the last cylinder the furthest one.
tween two branch junc-

nder W e
tions colored in bright

green. Figure 1.2: The abstract segment presentation.

| Definition 1.1.1 — Segment. Cylinders between two neighboring branching juntions are stored

\-

«F

- >

Figure 1.1: Cylinders be-

Each Segment has at least 2 child segments connected to it, if it ends in a branch juntion or zero
children if it is a tip segment. We can see examples in figures 1.1, 1.1 and 1.1.

1.1 QSM %

Leaf 2-2-2-2

1
1
i

Figure 1.3: A cylinder
screenshot with a high- Figure 1.4: The highlighted cylinder in the abstract tree repre-
lighted cylinder. senation.

\/

Leaf 2-2-2-2

I
i

Figure 1.5: A cylin-
der screenshot with two Figure 1.6: The highlighted cylinders in the abstract tree repre-
highlighted cylinders. senation.

10 Chapter 1. Definitions

e

Leaf 2-2-2-2

Leaf 2-2-2-1

Figure 1.7: A cylinder
screenshot with a high- Figure 1.8: The highlighted cylinder in the abstract tree repre-
lighted cylinder. senation.

As the segments have a topological parent child relation, also its contained cylinders have one.

1.2 Growthparameters

In Hackenberg et al. 2015b [9] recursive parameters as the following have been firstly defined as
output.

We use here in the following:

1.2.1 Growthlength

Definition 1.2.1 — Growthlength. The growthlength of a cylinder is the cylinder’s length plus
its childrens’ growthlength.

We can see an example in figure 1.9.

1.2 Growthparameters 11

|
!
L/ \' \
\) - /
\ VY
‘\‘\‘ A 7, /
) Wl)
Figure 1.9: The cylinder of interest is the

green one. Its growthlength is the summed
up length of all green and yellow cylinders.

In figure 1.10 we see the modeled relation between growthlength and radius.

GrowthLength

GrowthLength [m"3]
50 100 150 200 250 300

Radius [m]

Figure 1.10: We plot for a Quercus Petraea
radius vs growthlength. A clear s-shaped
pattern is visible.

1.2.2 Growthvolume

The growthvolume is defined in the same manner as the growthlength, but utilizes volume instead
of length

Definition 1.2.2 — Growthvolume. The growthvolume of a cylinder is the cylinder’s volume
plus its childrens’ growthvolume.

In figure 1.11 we see the modeled relation between growthvolume and radius.

1.3

1.3.1

12 Chapter 1. Definitions

GrowthVolume

1.0
[y

GrowthVolume [m*3]

\'\

Radius [m]

Figure 1.11: We plot for a Quercus Petraea
radius vs growthvolume. A clear power func-
tion is visible.

Branchorder

SimpleForest has implemented various ways to express the branch order of the underlying branch
We use here in the following:

Branchorder

The traditional way to express the branch order. The stem is initialized with branch order 0.
Branches - major branches as well as shoots - splitting from the stem have the branch order 1. At
each branch juntion the branch order of side branches is increased by 1.

The benefit of this branch order is that it can be also measured in the field. But it does not
correlate well with the radius, as we can see in figure 1.12.

0.10 0.12
! 1
oammm——

Radlus
0.06 0.08
I I

0.04
1

0.02
I

T T T
2 3 4

0.00
L

04

Branchorder

Figure 1.12: Each branch order contains
large as well as small radii.

1.3.2 Reverse Branchorder

In constrast to that we output as well:

Definition 1.3.1 — reverse Branchorder. The reverse Branchorder is defined as the maximal
number of branch junctions which can be passed before reaching a tip.

We can clearly see, that this one correlates a lot better with the radius:

1.3 Branchorder 13

0.10 0.12
1 I
Ty
-
-

0.08
1

.
oo
Tl
.o
s

Radius

0.06
I

0.04
1

0.02
!

0.00
I

-—

-

reverse Branchorder

Figure 1.13: The reverse Branchorder has a
close to linear relation to the radius.

1.3.3 Reverse Pipe Area Branchorder

According to the metabolic scaling theory the number of pipes/vessels of a tip is constant. So the
area of a tip can be seen as constant. If two or more tips merge into a common parent segment, their
number of pipes merges as well.
Definition 1.3.2 — reverse Pipe Area Branchorder. A tip receives the abstract unit 1 as
reverse Pipe Area Branchorder. A parent section receives the sum of its children’s reverse Pipe
Area Branchorder. The reverse Pipe Area Branchorder of a cylinder therefore equals the number
of supported tips.

0.12
|
.
Lo
* %P

Radius
0.08 0.10
I I
.
-
-

0.06

|
o
.

0.04
I
\

L)

0.02
1

‘e

S

0.00
L

T T T T
0 50 100 150

reverse Pipe Area Branchorder

Figure 1.14: We can see a strong non lin-
ear relation between reverse Pipe Area Bran-
chorder and the radius.

1.3.4 Reverse Pipe Radius Branchorder

Definition 1.3.3 — reverse Pipe Radius Branchorder. The reverse Pipe Radius Branchorder
is simply the square root of the reverse Pipe Branchorder.

14

Chapter 1. Definitions

1.4 Computational metrics

Radius

0.02 0.04 0.06 0.08 0.10 0.12

0.00

4 L]
2e %
i

.
-

2 4 6 8 10

reverse Pipe Radius Branchorder

Figure 1.15: We can see a strong linear rela-
tion between reverse pipe radius Branchorder
and the radius.

For the optimization routines the cloud to model distance is used as a metric.

Definition 1.4.1 — Point to Cylinder distance. We define the distance between a single point
and a single cylinder as the eulidean distance between the point and the finite cylinder hull.

p3

end T

R —
— -

p4

_H=90°

\u

pl

—— i s e . s e e .

on
T
G
~
T

Figure 1.16: We see for points and a cylinder,
the distance is always positive.

Definition 1.4.2 — Point to Model distance. A QSM consists of n cylinders. A single point
has therefore n Point to Cylinder distances. The minimum of those n distances is the Point to

Model distance.

Definition 1.4.3 — Cloud to Model distance. Depending on which metric is finally used we
can either build the average Point to Model distance for all points or used the root summed

squared metric here.

2.1

VA ‘ QRAAY i
W SR
RS "y ' X -

i)
0

o

%

> o i-mA
\/

‘ =0 \& R

i A

Rscript

A gitlab repository with an R-Script is available https://gitlab.com/SimpleForest/simpleForestR.

The script allows for powerful analysis of QSM csv output files. We can see various plots generated

with that script.

Stem Curve Pipe model theory
s
8
8 ® :
w0
< o <
8 H
3
= o . .
& 1
= o M
1) s 8 3
=1 S 43
E ®© g
2 k
El 2 g
= 8 8
g &
o P
3
g
© £
g
a3 o
T T T T
0 5 10 15 20 0 200 400 600 800
Height [m] Cross sectional area before branch junction

Figure 2.1: The stem curve of a Quercus Pe- Figure 2.2: Applied pipemodel theory on a

traea. Quercus Petraea.

https://gitlab.com/SimpleForest/simpleForestR

16

Chapter 2. Statistics

Branch Histogram

o
8

5 S

E

<

E o

3 S

S oS

S

=

§

g

N

a 9o+

5 o

£

=

g

3 8

g§ o .

<
s . .
s |
s

T T T T T T
0 5 10 15 20 25

Branch Height [m]

Figure 2.3: An histogram about the volume of
branches along the stem height.

GrowthVolume

@
& o |
z e
r
E
5
o
2
£
=
5 o | .
F
¢ 2
PR
-~
-t
9 | c——ttt O
s
T T T T
0.00 0.05 0.10 0.15
Radius [m]

Figure 2.5: The growthvolume radius relation.

Branch Order Histogram Volume

0.10 0.15 0.20 0.25
I I I I

Accumulated Branch Volume [m?3]

0.05
I

0.00
I

T T T
- o~ © -+)

Branch Order

Figure 2.4: The volume of branches depending
on the branch order.

GrowthLength
S -
B Rt
N

° Pal e W

3 - casite

& s

eenodt
5 g) 4
£ &7 Rl !
£ .
S d s
5 84 oo,
£
5 o
5 2 -
. .
8 - -
. g
Sl
o l”“‘—g'
T T T T
0.00 005 0.10 015
Radius [m]

Figure 2.6: The growthlength radius relation.

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1
52
5.3
5.4

6.1

7.1
7.2
7.3
74
7.5
7.6
7.7
7.8

Source Code SimpleForest 18

Binary Point Cloud Filters 19
Cut cloud above DTM

Euclidean Clustering Filter

Ground Point Filter

Radius Outlier Filter

Statistical Outlier Filter

Stem Filter

Stem Filter RANSAC

Filter By Min Height

Clustering, 28
Segmentation Euclidean Clustering

Dikstra Based Tree Segmentation

Voronoi Based Tree Segmentation

QSM based tree clustering

DTM/DEMsteps 34
Dtm Pyramidal Mlesac Fit

QSMsteps 36
QSM Spherefollowingbasic

QSM SpherefollowingAdvanced

Dijkstra Modelling

QSM Median Filter

QSM Correct Shoots

QSM Allometric Correction

QSM Allometric Correction Manual

QSM Reverse Pipe Model Filter

‘é\. i}
\\\v.

\1).-

A gitlab repository with the complete SimpleForest plugin https://gitlab.com/SimpleForest/
pluginSimpleForest is available.

https://gitlab.com/SimpleForest/pluginSimpleForest
https://gitlab.com/SimpleForest/pluginSimpleForest

Here point cloud filters are described which split up an input cloud into a denoised cloud and a
noise cloud.

4.1
4.1.1

414

20 Chapter 4. Binary Point Cloud Filters

10
Lower - the lower points.

Cut cloud above DTM
Screenshots

Figure 4.1: The input point Figure 4.2: The lower points Figure 4.3: The upper points
cloud and the DTM. output and the DTM. output and the DTM.

Step Placement

¢ Points
— Filter

A point scene.

The according DTM.

Upper - the upper points.

Description
The step imports a cloud and its according digital terrain model (DTM) as input. For each point its
height above the DTM is computed. If the height is lower than a threshold height, it is put into the
first output cloud, otherwise into the second.

The step can be used to cut out an improved vegetation cloud from an unclassified plot scenerie.
Or it can be used to generate a seed slice for segmentation which afterwards can be clustered.

4.2 Euclidean Clustering Filter 21

4.2 Euclidean Clustering Filter
4.2.1 Screenshots

Figure 4.4: The input point Figure 4.5: The largest cluster Figure 4.6: All other points in
cloud. in good output. noise output.

4.2.2 Step Placement

¢ Points
— Filter

423 10

A point cloud.
Filtered Cloud - the largest clusters combined in one cloud.

Noise - all other points.

4.2.4 Description

The step imports a cloud as input. The cloud is downscaled with the voxel grid downscale routine
from the PCL library [10]. The voxel size of the downscale routine is a user parameter - standard
value is 2 (cm).

Next the PCL euclidean clustering routine is performed. The distance between two clusters has
to be larger than a user given range, otherwise the clusters are merged. We use a standard value of
5 (cm).

If a cluster less than minimum percentage of the downscaled cloud size or more than maxi-
mum percentage of the downscaled cloud it is contained in the noise output. All other clusters’
points are stored in the filtered cloud output. We dont apply this two thresholds in standard values
as we use 0% and 100% respectively.

Instead we store the n largest clusters fullfilling this threshold in the filtered cloud output only,
with n set to 1 as standard.

22 Chapter 4. Binary Point Cloud Filters

4.3 Ground Point Filter
4.3.1 Screenshots

Figure 4.7: The ground points output. Figure 4.8: The noise points output.

4.3.2 Step Placement

¢ Points
— Filter

433 10

A point scene.
Ground Cloud - the ground points.

Noise - all other points.

4.3.4 Description
The step imports a cloud as input. The cloud is downscaled with the voxel grid downscale routine
from the PCL library [9, 10]. The voxel size of the downscale routine is a user parameter - standard
value is 4 (cm). This downscaling is done to assure an averaged point density over the input cloud
as well as to fasten up the following procedure.

For each downscaled point the normal is computed. A plane is fitted into the point‘s neighbor-
hood and the plane normal is the normal of the point. For retrieving the point‘s neighbors we need
to give a search range. The search range has to be larger than voxel size as otherwise no points
would be included in the neighborhood. The standard value is 20 (cm).

Then the angle between the point‘s normal and the z-axis is computed. If the angle is smaller
than a user given threshold it is accounted as a ground point and as noise otherwise.

Lastly a nearest neighbor search is performed for each point in the original input cloud to
the classified downscaled cloud. The original point will inherit its classification from its nearest
downscaled neighbor.

4.4
44.1

4.4.2

443

444

4.4 Radius Outlier Filter 23

Radius Outlier Filter
Screenshots

Figure 4.9: The input point Figure 4.10: The filtered Figure 4.11: The noise points
cloud. points output. output.

Step Placement

¢ Points
— Filter

10

A point scene.

Filtered Cloud - the filtered points.

Noise - all points having not enough neighbors.

Description

The step imports a cloud as input. On the cloud the radius outlier filter routine from the PCL library
[9, 10] is performed. For each point the number of neighbors within a user given search range are
retrieved. If the number of neighbors is smaller than a minimum number of points, the point is
considered noise. Otherwise it will remain in the filtered cloud.

The step‘s procedure can also be used as a clear sky filter by applying a large search range of
for example one meter and looking for a large number of minimum number points, e.g. 1000.

24 Chapter 4. Binary Point Cloud Filters

4.5 Statistical Outlier Filter
4.5.1 Screenshots

Figure 4.12: The input point Figure 4.13: The filtered Figure 4.14: The noise points
cloud. points output. output.

4.5.2 Step Placement

¢ Points
— Filter

453 10

A point scene.

Filtered Cloud - the filtered points.

Noise - all points having a too large distance to the neighbors.

4.5.4 Description

For each point the n closest neighbors are retrieved [9, 10]. The average distance to those neighbor
points is computed. Of all points’ average distances mean and standard deviation are calculated. If a
points average distance is larger than the mean plus a factor multiplied with the standard deviation,
the point is considered noise.

After an execution of the filter the point distribution changes, so the procedure can be repeated
a user desired number of iterations.

It is recommended to choose a large number of iterations, such as 15, and a large number
of standard deviation muliplication factor, such as 4. The number of n closest neighbors can be
choosen best first small, e.g. 2, and then the step is exectuted a second time with a larger number of
n.

4.6
4.6.1

4.6.2

4.6.3

464

4.6 Stem Filter 25

Stem Filter
Screenshots

Figure 4.15: The input point Figure 4.16: The stem points Figure 4.17: The non stem
cloud. output. points output.

Step Placement

¢ Points
— Filter

10

A point scene.

Stem Cloud - the stem points.

Noise - all other points.

Description

The step imports a cloud as input. The cloud is downscaled with the voxel grid downscale routine
from the PCL library [10]. The voxel size of the downscale routine is a user parameter - standard
value is 2 (cm). This downscaling is done to assure an averaged point density over the input cloud
as well as to fasten up the following procedure.

For each downscaled point the normal is computed. A plane is fitted into the point‘s neighbor-
hood and the plane normal is the normal of the point. For retrieving the point‘s neighbors we need
to give a search range. The search range has to be larger than voxel size as otherwise no points
would be included in the neighborhood. The standard value is 5 (cm).

Now each point has a precomputed normal. We again apply a second range search with a second
search range - has to be larger than search range. Teh standard value is 12 (¢m). On all normals
of the points within the second search range a Principal Component Analysis is performed. The
Eigenvector of the largest Eigenvalue is returned as the so called principal direction. This principal
direction is alligned with the growth direction of the underlying branch or stem segment [11].

Then the angle between the point‘s growth direction and the z-axis is computed. If the angle is
smaller than a user given threshold it is accounted as a stem point and as noise otherwise. We use
20 as a standard value here.

Lastly a nearest neighbor search is performed for each point in the original input cloud to
the classified downscaled cloud. The original point will inherit its classification from its nearest
downscaled neighbor.

26 Chapter 4. Binary Point Cloud Filters

4.7 Stem Filter RANSAC
4.7.1 Screenshots

Figure 4.18: The input point cloud. Figure 4.19: The stem points output.

4.7.2 Step Placement

¢ Points
— Filter

4.7.3 10

A point scene.

Stem Cloud - the stem points.

Noise - all other points.

4.7.4 Description

The step imports a cloud as input. The cloud is downscaled with the voxel grid downscale routine
from the PCL library [10]. The voxel size of the downscale routine is a user parameter - standard
value is 2 (cm). This downscaling is done to assure an averaged point density over the input cloud
as well as to fasten up the following procedure.

For each downscaled point the normal is computed. A plane is fitted into the point‘s neighbor-
hood and the plane normal is the normal of the point. For retrieving the point‘s neighbors we need
to give a search range. The search range has to be larger than voxel size as otherwise no points
would be included in the neighborhood. The standard value is 3 (cm).

The cloud is sliced into 1 meter height slices. Into each slice with an inlier range a RANSAC
cylinder is fitted. The standard value is 10 (cm). If the angle betwen the cylinder axis and the
z-axis is smaller than max degrees all inliers are considered stem points. Otherwise the points are
considered noise.

4.8
4.8.1

4.8.2

4.8.3

484

jeae

4.8 Filter By Min Height 27

Filter By Min Height
Screenshots

Figure 4.20: The input point Figure 4.21: The valid clus- Figure 4.22: The noise clus-
cloud as well as a DTM. ters close enough to the DTM. ters.

Step Placement

¢ Points
— Filter

10

A point scene.

The DTM.

Tree Cloud - the tree points.

Noise Cloud - all other points.

Description

Within the vegetation cloud after segmentation and filtering artefact clouds of trees not belonging to
any tree within the plot can remain. While the stem and other major parts of those trees are outside
of the plot borders crown artefacts can be within the point cloud. Those artefacts sub clouds are far
above the ground model.

This steps helps to remove those artefacts. It searches within each input cloud for that clouds’
lowest point. Then it computes the distance of the lowest point to the ground. If the distance is
larger than maximal MinHeight, the cloud is considered an artefact, e.g. noise. Otherwise it is
classified as useful vegetation.

A

3 \»‘ﬁ, <V

‘ \‘ A N\ oy g

N AR
el g %

‘ & \ N\A i"‘ WA
e, N/

Sy

‘.&l\‘” ;4 L’)”l‘.‘ o8
N

R— "A ‘,‘ &

ST
” v.ig':/,
W5

SN

| Vo L L 3% &
e o NS\

"“?"jl YN

5.1 Segmentation Euclidean Clustering 29

5.1 Segmentation Euclidean Clustering
5.1.1 Screenshots

Figure 5.1: The points stored into a single cloud. Figure 5.2: The input cloud split into clusters.

5.1.2 Step Placement

¢ Points
— Clusterize

5.1.3 10

A point cloud.
Euclidean clusters - input cloud split into multiple clusters.

5.1.4 Description

The step imports a cloud as input. The cloud is downscaled with the voxel grid downscale routine
from the PCL library [10]. The voxel size of the downscale routine is a user parameter - standard
value is 2 (cm).

Next the PCL euclidean clustering routine is performed. The distance between two clusters has
to be larger than a user given range, otherwise the clusters are merged. We use a standard value of
5 (cm).

A cluster has to contain more than n points, otherwise it will be removed.

5.2
5.2.1

5.2.2

5.2.3

30 Chapter 5. Clustering

Dikstra Based Tree Segmentation

Screenshots

Figure 5.3: A vegetation cloud Figure 5.4: A slice near root Figure 5.5: The vegetation
stored into a single cloud. height split into clusters. cloud split into different trees.

Figure 5.6: A vegetation cloud Figure 5.7: A slice near root Figure 5.8: The vegetation split
in low quality. height split into clusters. into incomplete trees.

Step Placement

¢ Points
— Clusterize

10

Vegetation cloud - A point cloud of a forestry scene.

Dijsktra Segmented - The vegetation cloud split into multiple clusters consisting of trees.

Seed clusters - The seed clusters close to the root of the trees.

5.2.4 Description

The step imports a vegetation cloud as input. Optionally this cloud can be scaled along the z-axis
with a factor between 0.1 and 1. Scaling should be applied for lower quality point clouds. This
enables the algorithm to jump over occlusion gaps along the stem. Those gaps get smaller while
horizontal gaps between two neighboring trees remain their size and the algorithm does not jump
over to other trees.

Then the cloud is downscaled with the voxel grid downscale routine from the PCL library [10].
The voxel size of the downscale routine is a user parameter - standard value is 3 (cm).

5.2 Dikstra Based Tree Segmentation 31

The seed clusters are treated in the same manner. Each cluster here already has a different tree
ID. Dijkstra’s algorithm [4] is then initialized. We perform a nearest neighbor search from the seed
clusters to the forestry scene. The nearest forestry scene points retrieve the cluster ID of their seed
neighbor point and a Dijkstra distance of zero, all other points are initialized with unkown ID and
distance infinity. Between all forest scene point pairs with a distance smaller than a user given
range edges are generated. When Dijkstra’s algorithm terminates, most vegetation scene points are
connected to one of the seed points. The connection is along a path on the tree surface if range is
choosen small enough. Nevertheless range should be larger than voxel size. We choose in general
a 2-3 times larger value here.

Also Dijkstra’s algortithm cannot jump over occlusion gaps which are larger than range. The
parameter factor can help here. Otherwise both voxel size and range can be enlarged.

It is sufficient to have segmented information for the major branching structure, see figure 5.8.
After the segmentation of major branch structure the Voronoi based segmentation 5.3 is able to
fully segment the remaining cloud.

Lastly a nearest neighbor search is performed for each point in the original vegetation cloud to
the classified downscaled cloud. The original point will inherit its classification from its nearest
downscaled neighbor.

5.3
5.3.1

5.3.2

5.3.3

5.3.4

32 Chapter 5. Clustering

Voronoi Based Tree Segmentation
Screenshots

Figure 5.9: A vegetation cloud Figure 5.10: An incomplete Figure 5.11: The vegetation
stored into a single cloud. Djikstra segmentated scene. cloud split into different trees.

Step Placement

¢ Points
— Clusterize

10

Vegetation cloud - A point cloud of a forestry scene.

algorithm.

Voronoi Segmented - vegetation cloud split into multiple clusters consisting of trees.

Seed clusters - the seed clusters produced by an incomplete segmentation of the Dijkstra

Description

The step imports a vegetation cloud as input. Optionally this cloud can be scaled along the z-axis
with a factor between 0.1 and 1. Scaling should be applied for lower quality point clouds. This
enables the algorithm to jump over occlusion gaps along the stem. Those gaps get smaller while
horizontal gaps between two neighboring trees remain their size and the algorithm does not jump
over to other trees.

Then a nearest neighbor search is performed for each point in the unsegmented cloud to the
Dijkstra seeds. If the distance to the nearest neighbor is smaller than threshold, the vegetation
point inherits the Dijkstra tree ID.

5.4 QSM based tree clustering 33

5.4 QSM based tree clustering
5.4.1 Screenshots

Figure 5.12: A tree cloud stored Figure 5.13: A gqsm produced Figure 5.14: The tree cloud split
into a single cloud. with this cloud. into multiple clusters.

5.4.2 Step Placement

¢ Points
— Clusterize

543 10

Tree cloud - A point cloud of a segmented tree.
QSM - A gsm produced with this cloud.
ClusterID - A vector storing the cluster ID for each point of the tree cloud.

5.4.4 Description

The step imports a tree cloud and a QSM as input. Each point of the cloud is alligned to its closest
cylinder. First the cylinder inherits the growthlength of the cylinder as a temporary parameter. The
points are then sorted by their growthlength and then split into number of Clusters. The points
with the largest growthLength are stored in the first cluster, the point with the smallest in the last.

Here steps are described which produce a digital terrain model (DTM) or a digital elevation
model(DEM).

6.1
6.1.1

6.1.2

6.1.3

6.14

6.1 Dtm Pyramidal Mlesac Fit 35

Dtm Pyramidal Mlesac Fit
Screenshots

Figure 6.1: The ground points colored by Figure 6.2: The Digital terrain model colored
height. grayscale by height.

Step Placement

» Rasters/Images
— Digital Elevation Model

10

Ground cloud - A point cloud of the ground points.

Dtm - The digital terrain model of the ground.

Ground points - A point cloud of the ground points.

Description

The step imports a ground cloud as input. The cloud is downscaled with the voxel grid downscale
routine from the PCL library [10]. The voxel size of the downscale routine is a user parameter -
standard value is 5 (cm).

For each downscaled point the normal is computed with a user given search range. This
search range has to be at minimum 2-3 times larger than the voxel size with default value 20 (cm).

A digital terrain model (Dtm) is then generated and will receive a chosen cell size - standard
value is 20 (cm). The cell size is supposed to be in the order of search range, but can also be larger.
A smaller value will not improve the accuracy of the Dtm.

First into all points a Mlesac [12] plane is fitted. Then the area is split into four even sized
squares, so are so points subdiveded into four clusters. Each cluster receives another Mlesac plane
fit. The new plane is accepted is the angle between the new plane’s normal and the old plane’s
normal does not deviate more than angle. Otherwise the plane coefficient of the subdivision are
inherited from the parent division. This routine is repeated iteratively until a subdivision size
smaller or equal cell size is reached.

The small subdivision build a raster and each raster cell receives the height value of the plane’s
center point.

All subdivisions are then median filtered. Lastly a new raster is build with the exact cell size.
The cell values are retrieved via an Inverse Distance Weighted interpolation.

N
TN K
LN
J iy Y TSN

/

Here steps are described which fit or improve a QSM.

7.1 QSM Spherefollowingbasic 37

7.1 QSM Spherefollowingbasic

7.1.1 Screenshots

Figure 7.1: The input points stored in a single = Figure 7.2: The QSM without postprocessing
cloud. improvements.

7.1.2 Step Placement

* 3D geometry
- QSM

Input cloud - A denoised point cloud of a tree.

QSM Cylinder - The QSM stored in Computree format.

SphereFollowing QSM - An internal QSM structure used to import into other Simple-
Forest steps.

e

SphereFollowing parameters - The optimized sphereFollowing parameters.

7.1.4 Description

The method is used to fit cylinders into a de-noised point cloud and to build the tree model. Spheres
are utilized to follow the branching structure of the tree from the root to its tips [7, 8, 9].

The cloud is downscaled with the voxel grid downscale routine from the PCL library [10]. The
voxel size of the downscale routine is a user parameter. Additionally only the largest cluster of an
euclidean clustering routine with clustering range to be set will be processed. This improves the
parameter optimization, as non reachable points will not effect the cloud to model distance.

The algorithm:

A sphere with a center point on a skeleton axis cuts the point cloud. All points within a distance
of sphere Epsilon to the sphere-surface are considered to be used to detect the next sphere and are
put into a sub point cloud Py,.

38 Chapter 7. QSM steps

Figure 7.3: Py,; on the sphere
surface.

P, is clustered then with euclidean clustering distance into i clusters P, sorted by their
number of points decreasingly. Each cluster represents a cross-sectional area of the stem/branch.

Figure 7.4: The first cluster. Figure 7.5: The second cluster. Figure 7.6: The third cluster.

A circle is fitted with one of the following methods

* Gauss Newton Least Squares

* Random Sample Consensus (RANSAC) [5]

¢ Maximum Likelihood Estimator SAmple Consensus (MLESAC) [12]
¢ M-estimator SAmple Consensus (MSAC) [12]

* Randomized M-estimator SAmple Consensus (RMSAC) [12]

¢ Progressive Sample Consensus (PROSAC) [1]

* Randomized RAndom SAmple Consensus (RRANSAC) [2]

¢ Least Median of Squares (LMEDS) [6]

into P, if the number of points in P; exceeds minPts. The inlier distance for the method is set
as a user parameter as well as the number if iterations of this routine.

The center point of the circle, the center point of the sphere and the circle radius are chosen as
cylinder parameters.

7.1 QSM Spherefollowingbasic 39

Figure 7.7: The detected cylin-
der.

The circle is enlarged with sphere multiplier and transformed to a three dimensional sphere,
but the sphere radius is never allowed to be smaller than min global radius.

Figure 7.8: The next search
sphere.

The procedure is repeated recursively until no more cross sectional areas can be found.

Figure 7.9: The first part of the Figure 7.10: More parts of the Figure 7.11: Close to the com-
tree is modelled. tree is modelled. plete tree is modelled.

The algorithm is initialized on a slice at ground height with the thickness initialization height.

40

Chapter 7. QSM steps

Three parameters, namely sphere multiplier, sphere epsilon and euclidean clustering dis-
tance can be searched for with the auto parameter search [9]. Additionally all three parameters
are optimized internally. Three vectors are choosen which contain percentage numbers. The named
parameters are multiplied with the percentage numbers and each potential parameter combination
is tested.

The best model is chosen via the cloud to model distance. The parameter set with the smallest
cloud to model distance is chosen after parameter optimization. The following options to compute
the cloud to model distance are available (distance method):

Second Momentum Order - The distance of each point to the model is squared. This
method is the most accurate for perfect point clouds, but also the least robust.

Second Momentum Order MSAC - Same as Second Momentum Order, but here the
distance is cropped at a maximum value named crop distance. This allows the algorithm to
ignore smaller branches better and gain some robustness.

First Momentum Order - The point distances are not squared and simply summed up.
More robust than the above ones.

First Momentum Order MSAC - Same as First Momentum Order, but again the distances
are cropped.

Zero Momentum Order. Here the number of inlier points of the input cloud to the model is
counted. An inlier is a point closer than crop distance. This method maximises the number
of inliers in contrast to the other minimization methods and is the most robust one.

7.2 QSM SpherefollowingAdvanced 41

7.2 QSM SpherefollowingAdvanced
7.2.1 Screenshots

Figure 7.12: The input points clustered by their ~ Figure 7.13: The QSM without postprocessing
branch order. improvements.

7.2.2 Step Placement

* 3D geometry
- QSM

7.23 10

Result SphereFollowing Parameters - Parameters computed with SphereFollowing Basic,
section 7.1.

Input Cloud - The input cloud.

Input Cluster ID - A vector storing for each point of Input Cloud its cluster ID computed
with QSM based tree clustering, section5.4.

QSM Cylinder - The QSM stored in Computree format.

SphereFollowing advanced QSM - An internal QSM structure used to import into other
SimpleForest steps.

NININ

SphereFollowing advancedparameters - The optimized sphereFollowing parameters.

7.2.4 Description
The method is used to fit cylinders into a de-noised point cloud and to build the tree model. Spheres
are utilized to follow the branching structure of the tree from the root to its tips [7, 8, 9].

The input tree cloud has been preprocessed with QSM based tree clustering, section 5.4. This
routine did split the isolated tree cloud into n clusters. The first cluster contains the stem and major
branches, the last cluster the twig points. Clusters in between represent the intermediate branching
structure ordered from close to the stem to close to the twigs. Exemplarily we use n = 3 in the
following description.

42 Chapter 7. QSM steps

The optimized parameters Result SphereFollowing Parameters computed from SphereFol-
lowing Basic, section 7.1, utilizing the same but unclustered input cloud are imported as well.

The preprocessing with the voxel grid downscale and the euclidean clustering routine uses
simply the imported parameters and those cannot be modified.

Then only the first cluser, e.g. the stem and major branches is used for modelling. An
optimization routine starts with the imported method parameters and optimizes sphere Epsilon,
euclidean clustering distance and sphere multiplier - all described in SphereFollowing Basic
7.1 - only for those stem points. After the optimization finishes the second cluster is added to the
first cluster. A new modelling run starts for the extended cloud using the optimized parameters
from the first run for both the first and the second cluster as initial parameters. Yet sphere Epsilon,
euclidean clustering distance and sphere multiplier are optimized here differently for the first
and the second cluster. Then the last cluster is added, e.g. the full tree is modelled. The stem
cluster receives the stem parameters from the second run and both the intermediate and the twig
cluster receive the parameters of the second cluster from the second run. All three clusters receive
different optimized parameters in the end. In our case with three clusters we have optimzied
3x3, e.g. 9 parameters. This leads to an improved QSM quality in comparison to the QSM
Spherefollowingbasic, section 7.1, which only optimizes one set of 3 parameters. The downside is
that the calculations take more time, as we optimize a higher parameter space. We can reduce the
compuation time by either enlarging the convergence cireterium of the down hill simplex min size.
The min size roughly represents how much parameters change from one to the next iteration. Or
we simply limit the maximal number if iterations.

The best model is chosen via the cloud to model distance [9]. The parameters are also imported
from Result SphereFollowing Parameters with the following options set in the exection of
SphereFollowing Basic, section 7.1:

* Second Momentum Order - The distance of each point to the model is squared. This

method is the most accurate for perfect point clouds, but also the least robust.

¢ Second Momentum Order MSAC - Same as Second Momentum Order, but here the

distance is cropped at a maximum value named crop distance. This allows the algorithm to
ignore smaller branches better and gain some robustness.

* First Momentum Order - The point distances are not squared and simply summed up.

More robust than the above ones.

* First Momentum Order MSAC - Same as First Momentum Order, but again the distances

are cropped.

* Zero Momentum Order. Here the number of inlier points of the input cloud to the model is

counted. An inlier is a point closer than crop distance. This method maximises the number
of inliers in contrast to the other minimization methods and is the most robust one.

7.3 Dijkstra Modelling 43

7.3 Dijkstra Modelling
7.3.1 Screenshots

Figure 7.14: A result cylinder model with unim-
proved cylinders visualized in meshlab.

7.3.2 Step Placement

* 3D geometry
- QSM

733 10

Input cloud - A denoised point cloud of a tree.
QSM Cylinder - The QSM stored in Computree format.

Dijkstra QSM - An internal QSM structure used to import into other SimpleForest steps.

7.3.4 Description
The method is used to fit cylinders into a de-noised point cloud and to build the tree model. The
method relies on Dijkstras algorithm. The algorithm parameters are estimated internally via an
optimization method, which can be adapted by the user.

The cloud is downscaled with the voxel grid downscale routine from the PCL library [10]. The
voxel size of the downscale routine is a user parameter. Additionally only the largest cluster of an
euclidean clustering routine with clustering range to be set will be processed. This improves the
parameter optimization, as non reachable points will not effect the cloud to model distance.

Aft

After a skeleton is build with the dijkstra algorithm [3, 4] each skeleton unit gets its nearest input
points allocated to build a subcloud P,. A cylinder is fitted with one of the following SACModel
methods

44

Chapter 7. QSM steps

Random Sample Consensus (RANSAC) [5]

Maximum Likelihood Estimator SAmple Consensus (MLESAC) [12]
M-estimator SAmple Consensus (MSAC) [12]

Randomized M-estimator SAmple Consensus (RMSAC) [12]
Progressive Sample Consensus (PROSAC) [1]

Randomized RAndom SAmple Consensus (RRANSAC) [2]

Least Median of Squares (LMEDS) [6]

into P, if the number of points in P; exceeds minPts. The inlier distance for the method is set
as a user parameter as well as the number if iterations of this routine.

The dijkstra parameters are chosen in an optimization routine [9]. The qsm is here modelled
muliple times.

The best model is chosen via the cloud to model distance. The parameter set with the smallest
cloud to model distance is chosen after parameter optimization. The following options to compute
the cloud to model distance are available (distance method):

Second Momentum Order - The distance of each point to the model is squared. This
method is the most accurate for perfect point clouds, but also the least robust.

Second Momentum Order MSAC - Same as Second Momentum Order, but here the
distance is cropped at a maximum value named crop distance. This allows the algorithm to
ignore smaller branches better and gain some robustness.

First Momentum Order - The point distances are not squared and simply summed up.
More robust than the above ones.

First Momentum Order MSAC - Same as First Momentum Order, but again the distances
are cropped.

Zero Momentum Order. Here the number of inlier points of the input cloud to the model is
counted. An inlier is a point closer than crop distance. This method maximises the number
of inliers in contrast to the other minimization methods and is the most robust one.

7.4 QSM Median Filter 45

7.4 QSM Median Filter
7.4.1 Screenshots

Figure 7.15: The unimproved QSM in close up Figure 7.16: The improved QSM in close up
view. view.

7.4.2 Step Placement

* 3D geometry
- QSM

743 10

Internal QSM - An internal QSM structure used to import into other SimpleForest steps.

QSM Cylinder - The QSM stored in Computree format.

QSM sphereFollowing median filtered - An internal QSM structure used to import into
other SimpleForest steps.

7.4.4 Description
The method imports a QSM. The radii of the QSM’s cylinders are filtered via median filtering.
A list of child, grandchild, grandgranchild, parent, grandparent and grandgrandparent with the
cylinder itself is generated. The median radius of this list is computed. If the cylinder’s radius
deviates more than percentage of the median radius to this median radius it will receive the median
radius as a new radius.

46 Chapter 7. QSM steps

7.5 QSM Correct Shoots
7.5.1 Screenshots

Figure 7.17: The input QSM. Figure 7.18: The QSM with corrected shoots.

7.5.2 Step Placement

* 3D geometry
- QSM

753 10

Internal QSM - A precomputed QSM.
QSM Cylinder - The QSM stored in Computree format.
Shoot corrected QSM - An internal QSM structure used to import into other SimpleForest

steps.

7.5.4 Description

Often shoots have a largely overestimated radius. This method detects all shoots growing out of the
stem.

All branches growing out of the stem are analyzed. If the analyzed branch does not split at all,
it is detected as a shoot. If apply to second order branches also is checked, then it might split
exactly but not more than one time to be detected as a shoot.

All detected shoots get a new user choosen as correction radius.

7.6

7.6.1

7.6.2

7.6.3

7.64

7.6 QSM Allometric Correction 47

QSM Allometric Correction

Screenshots

Figure 7.19: The input QSM. Figure 7.20: The QSM allometric corrected.

Step Placement

* 3D geometry
- QSM

10

Internal QSM - an input QSM.

QSM Cylinder - The QSM stored in Computree format.

Allometric Corrected QSM - An internal QSM structure used to import into other

SimpleForest steps.

Description

The method corrects under or overestimated radii among the complete QSM [9].

A nonlinear model of the form y = a *x” is build with y being the radius and x is a user chosen
growth parameter, either growthVolume or growthLength. If a cylinders radius is outside of the
correction range it will be corrected to the predicted radius y.

The power model is build as described, here with the growthVolume as an example:

Each cylinder has a radius and a growthVolume as can be seen in figure 7.21.

48

Chapter 7. QSM steps

Radlus

0.15

0.10

0.05

0.00

- &,
. . . e M
-~ “aﬁ”.
.. SA
b T .«
. o..*‘. 4
.‘. gl O
¢
OTO 0{5 1.‘0 1{5

GrowthVolume

Figure 7.21: Radius and growthVolume for each cylinder of a QSM.

Only the radii estimated by a modelling routine are acounted to. Radii corrected in a postpro-
cessing routine such as the QSM Median Filter, section 7.4 are ignored, see figure 7.22.

Radius

0.15

0.10

0.05

0.00

o L4
* W
N [-,\"4}0"
: .~ *‘5:*-"‘.
.. SA
..‘ C...-:‘.’
° e %o
14 3 22
i
¢
T T T T
0.0 0.5 1.0 1.5

GrowthVolume

Figure 7.22: Postprocessed cylinders are ignored, here colored in red.

We do not want to use cylinders near the twigs or near the root for the prediction. Also cylinders
having a too small or too large growthVolume are ignored, see figure 7.23.

7.6 QSM Allometric Correction 49

0.15
|
L]

- L 4
.
. . .-. a,‘:ﬁ.‘)
b o - ‘t
e “ &
w © ..; . L]
= .
=1 ° F)
g ..‘ .. =.'.:
‘? :: Ja
g g - -
N T T T T
0.0 0.5 1.0 1.5

GrowthVolume

Figure 7.23: Postprocessed cylinders are ignored as well as root or
twig cylinders, here colored in red.

All other cylinders are used to make a power fit, see figure 7.24.

.
L]
L]
e,
w o
P v A
o . N Lo
” s] . ‘ ¢
L]
§ . .'.‘
o . L
-
3 22
2 -
o
g
g -
T T T T
0.0 05 1.0 15

GrowthVolume
Figure 7.24: Cylinders used to build the power model.

After the prediction is finished wrongly fitted cylinders can be corrected and the result plot can
be seen in figure 7.25.

50 Chapter 7. QSM steps

wn
2
] L 1]
e L e \""'._‘.-u-""
]
-*ﬁ.’ o ‘.l~ e

o | 0 S

S o
o
>
5
z Ll

w s

o 4

b=

s

8 {

g |

o

T T T T T T T T
0.0 0.1 02 03 04 05 06 07

GrowthVolume

Figure 7.25: Corrected QSM.

If twigs have been lost during denoising a minimum radius r can be searched for by enabling
the switch estimate average radius. In that case the equation is changed to y = a x” 4 r.

If the prediction of the model fails, the algorithm can fall back on a user given power parameter
b, The algorithm can fail for example if less than minimum number of measurements are used
to build the model.

7.7 QSM Allometric Correction Manual 51

7.7 QSM Allometric Correction Manual
7.7.1 Screenshots

Figure 7.26: The input QSM. Figure 7.27: The QSM allometric corrected.

7.7.2 Step Placement

* 3D geometry
- QSM

7.7.3 10

Internal QSM - an input QSM.
QSM Cylinder - The QSM stored in Computree format.
Manual allometric Corrected QSM - An internal QSM structure used to import into other

SimpleForest steps.

7.7.4 Description

The method corrects under or overestimated radii among the complete QSM. It is aimed to do the
same correction as 7.6, but the power parameters are user chosen and not estimated automatically.

A nonlinear model of the form y = a * x? is imported with y being the radius and x is a user
chosen growth parameter, either growthVolume or growthLength. The user has to estimate the
parameters a and b externally utilizing statistical software like R with the uncorrected QSM as user
input. If a cylinders radius is outside of the correction range it will be corrected to the predicted
radius y. The predicted radius can never be smaller than min Radius.

7.8

7.8.1

7.8.2

7.8.3

784

52 Chapter 7. QSM steps

QSM Reverse Pipe Model Filter

Screenshots

Figure 7.28: The input QSM. Figure 7.29: The QSM pipe model corrected.

Step Placement

* 3D geometry
- QSM

10

Internal QSM - an input QSM.

Reverse Pipe Model Filtered QSM - An internal QSM structure used to import into other
SimpleForest steps.

QSM Cylinder - The QSM stored in Computree format.

Description

The method corrects under or overestimated radii among the complete QSM. According to the
pipemodel theory the area of a branch segment before a branch junction equals the summed area of
all the child segments. As the area at twig level is supposed to be equal for all twigs, the area of a
segment can be seen as the sum of all supported twig areas. Therefore the radius of a segment has
to correlate with the squared root of the number of supported twigs.

We defined in section 1.2 the reverse pipe branch order, which is exactly the squared root of the
number of supported twigs.

7.8 QSM Reverse Pipe Model Filter 53

0.12
I
.
S
© S Shauthue

Radius
0.06 0.08 0.10
I 1 1
So
o
o

0.04
.

o

L]
. :*
i

.
.
-

0.02
!

0.00
I

T T T T T
2 4 6 8 10 12

reverse Pipe Radius Branchorder

Figure 7.30: We can see a strong linear rela-
tion between reverse pipe radius Branchorder
and the radius.

A linear model of the form y = a *x is imported with y being the radius and x is the reverse pipe
radius branch order. If a cylinders radius is outside of the correction range it will be corrected to
the predicted radius y. The predicted radius can never be smaller than min Radius.

7.9 Evaluation

7.9
7.9.1

7.9.2

7.9 Evaluation

55

Evaluation

Results

For version 5.1.1 I recently denoised all 36 trees published in Hackenberg 2015a [8]. I did then run
the modeling with the SphereFollowing method 7.2:

Validation

e Erythropleum fordii

0 7
— [] 4
4
. . 4
Pinus massoniana ,
/
4
4
* Quercus petraea //
4
4
4
/
/
4
12
<
E <
—_ —
g ®
=2
S o
° .
Qo —— linear model ,
o
= 7
8 /
s . 4
o -=-=-- 1llline o
£ 4
2 °
)
@
% @
(o]
K
o
r—squared : 0.86
total error : 8
,' ccc :087
o 1 4
o
T T T 1
0.0 0.5 1.0 1.5

I will work on a peer-reviewed publication with hopefully extended and improved results.

Interpretation

Field measured Volume [m"3]

Figure 7.31: Evaluation of the Spherefollowing method.

The results are good, but worse than those in in Hackenberg 2015b [9]. This might have several

reasons:

* While the sphere following method can be parameterized in SimpleForest, the algorithm

parameters have been estimated fully by SimpleForest and not adapted by myself.

* 1 did not use those tree clouds and their field data during development of the plugin, neither

7.9.3

56

did I observe this data during denoising and preparation of the clouds. I simply might have
done less overfitting and provide more "true" results. Please understand that I did not fake
results by purpose in the named publication, but I might have done this a bit being unaware
of an overfitting potential.

* The current version can model a lot more clouds than the old software was capable. As I
constantly got access to user data, most times of lot lower quality, I did adapt my method to
perform better on clouds of different quality. Making an algorithm in that sense more generic
comes with the downside of having less accurate results in the spezialized case.

* 1 did not use intensity values while denoising. This is a clear limit in denoising capabilities.
Yet I did not want to rely on a feature which varies a lot from scanner to scanner and not all
cloud data has even intensity feature. Again, more generic means less accurate.

You should always download the data and play around with my evaluation script available at

simpleforest.org. Compare visually the quality of your own data to decide how much you can rely
on my evaluation.

Recommondatation

While there is multiple ways to produce a QSM I give you the following guideline:

* The spherefollowing method 7.2 is more robust and accurate in comparison to the Dijkstra
based method 7.3. I also evaluated Dijkstra method locally, and two out of 36 trees did fail
completely. For the remaining 34 tress the results have been worse.

* You can already achieve good results with the basic spherefollowing step 7.1. Putting on
top the spherefollowing advanved step 7.2 most likely will improve your results. But it does
not have to do so in every case. For low quality clouds I observed this one to perform less
accurate. For high resolted clouds this was not observed, but the modelling time is between
5-20 times longer. If you cannot efford to use up so much time, ignore the advanced step.

¢ I still recommmend to use the Dijkstra modelling step 7.3 in the following scenario. You
have a huge set of segmented clouds and want to rely on full automatism without visually
checking the QSMs’ visually. You can also efford to drop some of your clouds. For example
you have 1000 clouds of one species, your task is to make an allometric model and you are
satisfied with also having only 900 trees here. You can in such a case run both algorithms
and just stick to those QSMs which have similar volume measures. Having two comparable
results originating from different algorithms can be used as a full automatic validation check
for the quality. Then you should rely on the first point in that list and use the spherefollowing
result.

* For coniferous trees you should ignore the branches. Denoising is really difficult and left
over branches seem to be of such a low quality that the errors outweigh the benefit here.

https://simpleforest.org/data/cloud/temp/SimpleForestEvaluationData.zip
https://simpleforest.org/pages/rStatistics.html

7.10 FAQ

58
7.10 FAQ

* I struggle with setting up a pipeline: Read this user guide and watch my video tutorials. I
also have example scripts at simpleForest.org. If this does not help, please put your question
to the Computree forum.

* I run your pipeline, but it crashes: please check if this happens during the QSM export
step. Generating ply models can sometimes crash the whole pipeline. It seems to happen
randomly and I was not able to fix this yet. You can uncheck the ply generation in that case,
but if you do so, you cannot review your results in cloudcompare.

* I run your pipeline, but it crashes and not in the ply export: You can do a bug report in
the Computree forum. Even better would be to create an issue on my Gitlab.

https://www.youtube.com/watch?v=1crJUgVnXB0
 https://simpleforest.org/pages/download.html
 http://rdinnovation.onf.fr/projects/computree/boards/1
 http://rdinnovation.onf.fr/projects/computree/boards/1
 https://gitlab.com/SimpleForest/pluginSimpleForest/-/issues

AWM —

Version 5.2.2
Version 5.2.1
Version 5.1.4
Version 5.1.3

7.11

7.12

7.13

7.14

7.15

60

Version 5.2.3

* Improved the optimizer related cloud to model distance. The quality of the qsms should
be smoother now. That means the fitting quality improved. Runtime was also improved by
about 2 percent.

* Made QSM SpherefollowingAdvanced 7.2 inherit the cloud to model distance parameters
from its basic counterpart.

* Implemented a Gauss Newton circle fit in the least squares sense.

Version 5.2.2

* Five percent runtime improvement SphereFollowing method.
* Uploaded an R-script in a new repository and added to this handbook a statistic section 2.1.

Version 5.2.1

* Implemented a new cloud filter, the Filter By Min Height 4.8.

* Adjusted an internal routine of the DTM modeling 6.1. DTMs of plots with terrain changing
the slop frequently within the plot should be modelled better/correctly.

* Fixed a bug in the RANSAC stem filter 4.7 leading to a crash in rare occurences.

* Minor code improvements.

Version 5.1.4

* Fixed a bug in the Dtm Pyramidal Mlesac Fit 6.1. An internal threshold prevented the correct
modeling of ground with a decent amount of curvature. The threshold has been removed and
the modeling should be now correct also for non flat ground.

* Fixed a bug in the Stem Filter RANSAC 4.7. This step could crash under certain circum-
stances and the cause of error is now removed.

Version 5.1.3

* Fixed a bug in QSM SpherefollowingAdvanced 7.2. This bug made results of the method
worse and now the quality is improved.

* Fixed a bug in the ply generation of the export step. DTM is not modelled correctly. Also
added a smoothing step to the QSM ply generation.

¢ Added a new stem filter, the Stem Filter RANSAC 4.7.

* Improvement of QSM Allometric Correction 7.6. For clouds where the twigs were lost
during denoising, a switch was added to automatically estimate the average diameter of the
branches at the point where they have been cut.

* Various code quality improvements.

Bibliography
Arficles

Articles
[1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Ondrej Chum and Jiri Matas. “Matching with PROSAC-progressive sample consensus”. In:
1 (2005), pages 220-226 (cited on pages 38, 44).

Ondrej Chum and Jirt Matas. “Randomized RANSAC with Td, d test”. In: 2 (2002),
pages 448-457 (cited on pages 38, 44).

Jean-Francois Co6té, Richard Fournier, and Richard Egli. “An architectural model of trees to
estimate forest structural attributes using terrestrial LIDAR”. In: Environmental Modelling &
Software 26.6 (2011), pages 761-777 (cited on page 43).

Edsger W Dijkstra. “A note on two problems in connexion with graphs”. In: Numerische
mathematik 1.1 (1959), pages 269-271 (cited on pages 31, 43).

Martin A Fischler and Robert C Bolles. “Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography”. In: Communications
of the ACM 24.6 (1981), pages 381-395 (cited on pages 38, 44).

Andrea Fusiello. “Elements of geometric computer vision”. In: homepages.inf.ed.ac.uk
(2006) (cited on pages 38, 44).

Jan Hackenberg et al. “Highly accurate tree models derived from terrestrial laser scan data:
A method description.” In: Forests 5 (2014), pages 1069-1105 (cited on pages 37, 41).

Jan Hackenberg et al. “Non destructive method for biomass prediction combining TLS
derived tree volume and wood density.” In: Forests 6 (2015), pages 1274—1300 (cited on
pages 37,41, 55).

Jan Hackenberg et al. “SimpleTree —An Efficient Open Source Tool to Build Tree Models
from TLS Clouds.” In: Forests 6 (2015), pages 4245-4294 (cited on pages 10, 22-24, 37,
40-42, 44, 47, 55).

Rusu Radu Bogdan and Steve Cousins. “3D is here: Point Cloud Library (PCL)”. In: 6 (May
2011), pages 1-8 (cited on pages 21-26, 29, 30, 35, 37, 43).

63

[11]

[12]

Pasi Raumonen et al. “Fast Automatic Precision Tree Models from Terrestrial Laser Scanner

Data”. In: Remote Sensing 5.2 (2013), pages 491-520. 1SSN: 2072-4292. DOI: 10.3390/
rs5020491 (cited on page 25).

Philip HS Torr and Andrew Zisserman. “MLESAC: A new robust estimator with application

to estimating image geometry”. In: Computer vision and image understanding 78.1 (2000),
pages 138-156 (cited on pages 35, 38, 44).

https://doi.org/10.3390/rs5020491
https://doi.org/10.3390/rs5020491

RS B
- e&ﬁ\'\ < ?‘ w’
ST S8

\‘s'u

QR R AT
\3 G (a' 4 A{éj"\ 5

Branchorder................... 12
Computational metrics. 14
Cut cloud above DTM................... 20
Dijkstra Modelling 43
Dikstra Based Tree Segmentation. 30
Dtm Pyramidal Mlesac Fit............... 35
Euclidean Clustering Filter............... 21
Evaluation..................... ..., 55
FAQo 58
Filter By Min Height 27
Ground Point Filter 22

Growthparameters 10

QSM. . 8
QSM Allometric Correction.............. 47
QSM Allometric Correction Manual 51
QSM based tree clustering 33
QSM Correct Shootscvunn. 46
QSM Median Filter 45
QSM Reverse Pipe Model Filter.......... 52
QSM SpherefollowingAdvanced. 41
QSM Spherefollowingbasic 37
R-script. ..o 15
Radius Outlier Filter 23

Segmentation Euclidean Clustering 29
Statistical Outlier Filter.................. 24
StemFilter 25
Stem Filter RANSAC 26

H

Version5.1.3 ..., 60
Version5.1.4 60
Version 5.2.1 ..o 60
Version5.2.2 60
Voronoi Based Tree Segmentation 32

	Part I — Part One - definitions and statistics
	1 Definitions
	1.1 QSM
	1.2 Growthparameters
	1.3 Branchorder
	1.4 Computational metrics

	2 Statistics
	2.1 Rscript

	Part II — Part Two - The step description
	3 Source Code SimpleForest
	4 Binary Point Cloud Filters
	4.1 Cut cloud above DTM
	4.2 Euclidean Clustering Filter
	4.3 Ground Point Filter
	4.4 Radius Outlier Filter
	4.5 Statistical Outlier Filter
	4.6 Stem Filter
	4.7 Stem Filter RANSAC
	4.8 Filter By Min Height

	5 Clustering
	5.1 Segmentation Euclidean Clustering
	5.2 Dikstra Based Tree Segmentation
	5.3 Voronoi Based Tree Segmentation
	5.4 QSM based tree clustering

	6 DTM/DEM steps
	6.1 Dtm Pyramidal Mlesac Fit

	7 QSM steps
	7.1 QSM Spherefollowingbasic
	7.2 QSM SpherefollowingAdvanced
	7.3 Dijkstra Modelling
	7.4 QSM Median Filter
	7.5 QSM Correct Shoots
	7.6 QSM Allometric Correction
	7.7 QSM Allometric Correction Manual
	7.8 QSM Reverse Pipe Model Filter

	Part III — Part Three Evaluation
	7.9 Evaluation

	Part IV — Part Four FAQ
	7.10 FAQ

	Part V — Part Five Change Log
	7.11 Version 5.2.3
	7.12 Version 5.2.2
	7.13 Version 5.2.1
	7.14 Version 5.1.4
	7.15 Version 5.1.3

	Part VI — Part Six Citations
	Bibliography
	Articles

	Index

